树之二叉树

概括

树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
它具有以下的特点:每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交的子树;
树结构是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。

相关术语

节点的度:一个节点含有的子树的个数称为该节点的度;
叶节点或终端节点:度为0的节点称为叶节点;
非终端节点或分支节点:度不为0的节点;
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点;
树的度:一棵树中,最大的节点的度称为树的度;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次;
堂兄弟节点:双亲在同一层的节点互为堂兄弟;
节点的祖先:从根到该节点所经分支上的所有节点;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
森林:由m(m>=0)棵互不相交的树的集合称为森林;

二叉树

二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。二叉树每个结点至多拥有两棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒。

二叉树遍历

1)先(根)序遍历(根左右)
2)中(根)序遍历(左根右)
3)后(根)序遍历(左右根)

满二叉树

一棵深度为k且有2的k次幂减1个结点的二叉树称为满二叉树。

完全二叉树

只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。

二叉排序树

又称为是二叉查找树(Binary Sort Tree)或二叉搜索树。是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

缺陷

如果key插入类似于随机模型,二叉查找树简洁的实现就能够提供快速的search和insert,以及rank、select、delete和范围查找等。但现实中,worst-case不是不可能发生,例如客户端完全顺序或逆序插入key。这时算法的性能将退化为N,变成线性查找,所以这种可能性也是我们寻找更好算法和数据结构的原因。
二叉查找树的应用不是很多,因为它最坏的时候跟线性表差不多,大部分会应用到它的升级版,平衡二叉树和红黑树,这两棵树都能把时间复杂度稳定在O(logn)左右。虽然不会用到,但是二叉查找树是一定要学好的,毕竟它是平衡二叉树和红黑树的基础。

查找

二叉查找树的查找过程为从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字。

插入

把一个新的记录R插入到二叉查找树,应该保证在插入之后不破坏二叉查找树的结构性质。因此,为了执行插入操作首先应该查找R所在的位置。查找时,仍然采用上述的递归算法。若查找失败,则把包含R的结点插在具有空子树位置,若查找成功,则不执行插入,操作结束。

删除

删除叶节点-17

删除只有一个子节点的内部节点-18

删除有两个子节点的内部节点
如果我们进行简单的替换,那么可能碰到如下情况:

因此我们要在子树中选择一个合适的替换节点,替换节点一般来说会是右子树中的最小的节点:

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇